Scheme of Teaching, Learning & Examination leading to the Degree in Bachelor of Science in the Programme Botany Science

(Three years- Six Semester Degree Programme- C.B.C.S.) (B.Sc. Part II) Semester IV

					Teachir	Teaching & Learning Scheme	ning Sche	eme				Examir	nation & Eva	Examination & Evaluation Scheme	ieme		
S.	Subject	Subject	Teach	Teaching Periods Per Week	iods Per	Week		Credits		Duration of		Theory	Practical	tical	Total	Minimum Passing	num ing
		ooo		F	ط	Total	т/т	Practical Total	Total	E xam Hours	Theory+ MCQ External	Skill Enhancement Module	Internal	External	Marks	Marks	Grade
7	DSC IV Cell Biology, Genetics and Plant Breeding	BOT 4S	و	ı	ı	Q	4.5		4.5	03	80	20	1		100	40	٩
2	Lab	BOT 4S PR	I	I	9	9	I	2.25	2.25	04	ı		25	25	50	25	٩
m	Total		9		9	9	4.5	2.25	6.30	07	80	20	25	25	150	65	Ч
L: Lectu	L: Lecture. T: Tutorial. P: Practical	Practical															

L: Lecture, I: Iutorial, P: Practical

Student may complete their Internship/ Field Work/ Work experience from Second to Fifth semester of Bachelor of Science in the Programme, according to their convenience; @ denotes Non-Examination credits. Note: Internship/ Apprenticeship/ Field Work Experience (during vacations of semester II to V This will carry 5 credits for learning of 150 hours. Its credits and grades will be reflected in final semester VI credit grade report.

Part B Syllabus Prescribed for 2022 Year UG

Syllabus Prescribed for Three Year UG Programme

Programme: B.Sc. II

Semester III

Code of the Course/Subj	ect	Title of the Course/Subject	Total Num	ber of Periods
BOT (4S)	Cell	Biology, Genetics and Plant Br	eeding	72

COs:

After completion of this course successfully, the students would be able to

- 1. **Understand** the structure and purpose of basic components of prokaryotic and eukaryotic cells.
- 2. Identify the concept that explains chemical composition and structure of cell wall and membrane
- 3. Differentiate cell organelles on the basis of structure and function.
- 4. **Comprehend** the effect of chromosomal abnormalities in numerical as well as structural changes.
- 5. Have **conceptual understanding** of laws of inheritance, genetic basis of loci, alleles, their linkage and crossing over.
- 6. Understand the basic concepts of plant breeding.
- 7. Analyse the different selection and breeding methods applied in crop improvement.

	Unit	Content
UNIT-I	Cell Biology- Ultrastructure and functions of cell	12
	1.1The cell: Cell as a unit of structure and function, Characteristics of	
	Prokaryotic and Eukaryotic cell	
	1.2 The cell wall-chemical structure and function	
	1.3 Plasma membrane –Structure (models) and Functions	
	1.4 Cell Organelles: Structure and function of the following:	
	Endoplasmic Reticulum, Golgi complex, Vacuole, Ribosome, Peroxisome.	
UNIT-II	Cell Biology-Cell Cycle	12
	2.1 Nucleus – Ultra structure and functions (nuclear membrane, nuclear	
	pore complex and nucleolus)	
	2.2 Chloroplast- Structure and functions	
	2.3 Mitochondria- Structure and functions	
	2.4 Cell Cycle- G1,S,G2 and M phases, Mitosis stages and significance,	
	Meiosis- stages and significance, Amitosis,	
UNIT-III	Physical Basis of Inheritance	12
	3.1 Chromosome- Morphology, Types, Primary& Secondary constriction, Centromere & Telomere	
	3.2 Special types of chromosomes- Ex. Polytene	
	3.3 Chromosomal aberrations –	
	3.3.1 Structural aberrations:	
	Deletion (Terminal, Interstitial)Duplication (Tandem, Reverse tandem and	
	Displaced), Inversion (Pericentric and Paracentric) and Translocation	
	(Simple, Isochrome, Reciprocal, Displaced)	

	3.3.2 Numerical aberrations: Euploidy and aneuploidy3.4 Significance of chromosomal aberrations.	
UNIT-IV	Mendelian Genetics	12
	4.1 Concepts of Phenotype, Genotype, Heredity, Variation, Mendel's	
	experiments on Pea plants.	
	4.2 Mendelism: Mendel's law of Dominance, Back cross and Test	
	cross, Segregations and Independent assortment, Incomplete	
	dominance and co-dominance.	
	4.3 Interaction of genes- Complimentary, Supplementary	
	and Epistasis (Dominant and Recessive)	
	4.4.Problems based on Mendelism and Interaction of Genes	
UNIT-V	Neo Mendelian Genetics	12
	5.1 Linkage – Concept, Linkage group, Types and Theories-Sutton and Bovary theory	
	5.2 Crossing over- Concept, Types and mechanism of	
	crossing over	
	5.3 Gene mutations- Spontaneous and Induced-physical and chemical	
	mutagens	
	5.4 Cytoplasmic Inheritance- Chloroplast DNA	
UNIT-VI	Plant Breeding	12
	6.1 Historical account, objectives and scope of plant breeding,	
	6.2 Inbreeding depression and heterosis6.3 Selection methods for self and cross pollinated crops	
	6.4 Recent advances in plant breeding- cultivar development, tissue	
	Culture based approaches.	
	*SEM : Skill Enhancement Module	
	1. Microscopic techniques-	
	1.1 Introduction to the Microscope	
	1.2 Optical microscopy (conventional light microscopy (LM),	
	fluorescence microscopy (FM), confocal and Phase contrast	
	microscopy 1.3 Scanning and Transmission Electron Microscopy	
	1.4 Microscope Maintenance: Best Practices	
	1.5 Applications of Microscopy in Biological Sciences	
	2. Plant Breeding techniques-	
	2.1Collection of Variability	
	2.2 Evaluation and Selection of Parents	
	2.3 Hybridization and mutation breeding	
	2.4 Selection and Testing of Superior germplasm	
	2.5 Commercialization of New Cultivars	
	3. Plant propagation-	
	3.1 Need and potentialities for plant multiplication	
	3.2 Sexual and asexual methods of propagation	
	3.3 Advantages and disadvantages.	
	3.4 Micro grafting, hardening of plants3.5 Tissue culture propagation (Media preparation,	
	Sterilization, culture initiation)	
	COs:	
	On completion of this course the learner will be able to	
	1. enhance sense of sight by microscopic techniques	
	2. to describe the principle, construction and working of various	
	microscopes	
	3. allow to follow curiosity outdoors and explore hands-on,	
	experiential learning	
	 to achieve an increase in numbers and preserve the essential characteristics of the plant 	
	characteristics of the plant.	1

ACTIV	VITIES	
1	. Botanical Excursion/Short/Long Tour- Report submission	
2	. Collection and observation of Chironomus larvae.	
3	 Visit to krushi kendra for variety of crop plant seeds 	
4	. Germplasm collection of locally available crops	
5	. Visit to Research Institutes/Industries	

Suggested Readings:

- 1. Biology: The Dynamic Science, 2nd Edition, Peter J. Russell, Paul E. Hertz.. Beverly Mc Millan publications. 2012
- 5. Karp, G. (2010). Cell Biology, John Wiley & Sons, U.S.A. 6th edition.
- 6. Cell and Molecular Biology, 4th Edition, P.K. Gupta. 2014
- 7. Cytogenetics, 1st Edition, P.K. Gupta. 2013
- 8. Cell Biology, 10th Edition, S.P. Singh and B. S. Tomar. 2014.
- 9. Principles of Genetics, 7th Edition, Robert H. Tamarin. 2002. Tata- Mc Graw Hill publications.
- Gardner, E.J., Simmons, M.J., Snustad, D.P. (1991). Principles of Genetics, John Wiley & Sons, India.
- 11. Strickberger, M.W. (1985) Genetics, 3rd Edition. Pearson Printice Hall (printed in India by Anand Sons).
- 12. Ahluwalia K.B 2005 (First Edition). Genetics. New Age International Private Ltd. Publishers, New Delhi.
- 13. Gupta, P.K. (2018) Genetics. 5th Edition, Rastogi Publications, Meerut.
- 14. Theory and Problems of Genetics. W. D. Stansfield. 2002. Mc Graw Hill publications.
- 15. Genes- IX, 9th Ed., Benjamin Lewin. Jones and Bartlett Publishers, 2008.
- Chromosomal Abberrations: Basic and Applied aspects by Obe.G. and A.T. Natarajan (1990) Springer Verlag, Berlin.
- 17. Cytogenetics, Plant Breeding and evolution by U.Sinha and Sunita Sinha , Vikas Publishing House Private, Limited, 1998.
- 18. Principles of Plant Breeding Allard R. W. Wiley & Sons
- 19. Plant Breeding Theory and Practice Stoskopf N. C., Tomes D. T. & Christie, B. R. Westview Press

PRACTICAL

Cell Biology, Genetics and Plant Breeding

1.		Cell Biology
	1.	Study of plant cell structure with the help of epidermal peel mount of
		Onion/Rhoeo
	2.	Study of polytene chromosome either by slide preparation or photographs.
	3.	Study of various stages of mitosis (Squash preparation)
	4.	Study of various stages of meiosis (Smear preparation)
	5.	Study of chromosomal aberrations by using Photographs/Permanent Slides
	6.	Study of Chromosome Morphology using Permanent Slide/ Photograph
2.		Genetics
	7.	To prove Mendel's Monohybrid ratio.
	8.	To prove Mendel's Dihybrid ratio.
	9.	Problems based on Interaction of genes (Complementary/
		Supplementary/Epistasis)
	10	. Study of polyploides using photographs.

3.	Plant Breeding
	11. Study of vital floral structures for plant breeding.
	12. To perform Emasculation in various plants.
	13. To demonstrate hybridization techniques in plants.
	14. To study pollen viability.
	15. To study seed viability percentage in various crops

SANT GADGE BABA AMRAVATI UNIVERSITY, AMRAVATI PRACTICAL EXAMINATION B. Sc. II (Botany) SEMESTER – IV

(CBCS New) Practical –IV- Cell Biology, Genetics and Plant Breeding

Schedule- External Practical

Time: 4	hours	Marks: 25
Q. 1:	Cell Biology: To perform given experiment (Any one)	05 Marks
Q. 2:	Genetics: To perform given experiment (Any one)	05 Marks
Q. 3:	Plant Breeding: To perform given experiment (Any one)	05 Marks
Q. 4:	Spotting	05 Marks
Q. 6:	Viva-voce by External Examiner	05 Marks

SANT GADGE BABA AMRAVATI UNIVERSITY, AMRAVATI PRACTICAL EXAMINATION B. Sc. II (Botany) SEMESTER – IV

(CBCS New) Practical –IV- Cell Biology, Genetics and Plant Breeding

Schedule- Internal Practical

Time: 4 hours	Marks: 25
Q. 1: Student Attendance	05 Marks
Q. 2: Student Performance	05 Marks
Q. 3: Viva-voce by Internal Examiner Marks	05
Q. 4: Botanical Excursion/Short/Long Tour: Report submission	05 Marks
Q. 5: Class record	05 Marks